# Items by Evans, Jonathan

Up a level |

Number of items:

**34**.Alvarez-Caudevilla, P., Evans, J. D. and Galaktionov, V. A., 2015. Towards optimal regularity for the fourth-order thin film equation in RN:Graveleau-type focusing self-similarity.

*Journal of Mathematical Analysis and Applications*, 431 (2), pp. 1099-1123. Item availability may be restricted.Evans, J., 2015. Stick-slip singularity of the Giesekus fluid.

*Journal of Non-Newtonian Fluid Mechanics*, 222, pp. 24-33. Item availability may be restricted.Evans, J., Galaktionov, V. and Alvarez-Caudevilla, P., 2015. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type fundamental similarity solutions.

*Discrete and Continuous Dynamical Systems - Series A*, 35 (3), pp. 807-827. Item availability may be restricted.Álvarez-Caudevilla, P., Evans, J. D. and Galaktionov, V. A., 2013. The Cauchy problem for a tenth-order thin film equation I. Bifurcation of oscillatory fundamental solutions.

*Mediterranean Journal of Mathematics*, 10 (4), pp. 1761-1792.Evans, J.D., 2013. Stick-slip and slip-stick singularities of the Phan-Thien-Tanner fluid.

*Journal of Non-Newtonian Fluid Mechanics*, 199, pp. 12-19.Evans, J. D. and Fernandez, A., 2012. Sharp-interface models for concrete carbonation.

*In*:*International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2012*, 2012-09-19 - 2012-09-25, Kos. American Institute of Physics, pp. 835-838.Evans, J. D., Fernandez, A. and Muntean, A., 2012. Single and two-scale sharp-interface models for concrete carbonation—asymptotics and numerical approximation.

*Multiscale Modeling and Simulation*, 10 (3), pp. 874-905.Evans, J. D. and Galaktionov, V. A., 2011. On continuous branches of very singular similarity solutions of a stable thin film equation. I - The Cauchy problem.

*European Journal of Applied Mathematics*, 22 (3), pp. 217-243.Evans, J. D. and Galaktionov, V. A., 2011. On continuous branches of very singular similarity solutions of the stable thin film equation. II - Free-boundary problems.

*European Journal of Applied Mathematics*, 22 (3), pp. 245-265.Evans, J. D. and Sibley, D. N., 2010. The UCM limit of the PIT equations at a re-entrant corner.

*Journal of Non-Newtonian Fluid Mechanics*, 165 (21-22), pp. 1543-1549.Evans, J. D., 2010. Re-entrant corner behaviour of the Giesekus fluid with a solvent viscosity.

*Journal of Non-Newtonian Fluid Mechanics*, 165 (9-10), pp. 538-543.Evans, J. D., 2010. Re-entrant corner behaviour of the PTT fluid with a solvent viscosity.

*Journal of Non-Newtonian Fluid Mechanics*, 165 (9-10), pp. 527-537.Evans, J. D., 2010. Re-Entrant Corner Singularity of the PTT Fluid. American Institute of Physics, pp. 1676-1679. (AIP Conference Proceedings)

Evans, J. D. and Sibley, D. N., 2010. The Asymptotic Behaviour at a Re-Entrant Corner for a PTT Fluid in the Limit of Small kappa. American Institute of Physics, pp. 1680-1683. (AIP Conference Proceedings)

Evans, J. D., 2009. Re-entrant corner singularity of the Giesekus fluid. American Institute of Physics, pp. 1263-1266. (AIP Conference Proceedings)

Evans, J. D. and Sibley, D. N., 2009. Re-entrant corner flow for PTT fluids in the natural stress basis.

*Journal of Non-Newtonian Fluid Mechanics*, 157 (1-2), pp. 79-91.Evans, J., Henderson, V. and Hobson, D., 2008. Optimal timing for an indivisible asset sale.

*Mathematical Finance*, 18 (4), pp. 545-567.Evans, J. and Hagen, T., 2008. Viscoelastic sink flow in a wedge for the UCM and Oldroyd-B models.

*Journal of Non-Newtonian Fluid Mechanics*, 154 (1), pp. 39-46.Evans, J. and Sibley, D., 2008. Re-entrant corner flows of PTT fluids in the Cartesian stress basis.

*Journal of Non-Newtonian Fluid Mechanics*, 153 (1), pp. 12-24.Evans, J., 2008. Re-entrant corner flows of UCM fluids: The Cartesian stress basis.

*Journal of Non-Newtonian Fluid Mechanics*, 150 (2-3), pp. 116-138.Evans, J., 2008. Re-entrant corner flows of UCM fluids: The natural stress basis.

*Journal of Non-Newtonian Fluid Mechanics*, 150 (2-3), pp. 139-153.Evans, J. D. and Caillol, P., 2008. Standard cosmological evolution in a wide range of f(R) models.

*Physical Review D*, 77 (8), 083514.Evans, J. D., Galaktionov, V. A. and Williams, J. F., 2006. Blow-up and global asymptotics of the unstable Cahn-Hilliard equation with a homogeneous nonlinearity.

*Siam Journal on Mathematical Analysis*, 38, 64--102.Evans, J. D., 2006. Re-entrant corner flows of UCM fluids: The small and large Weissenberg limits.

*Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences*, 462, 3749--3774.Tucker, M.G., Goodwin, A.L., Dove, M.T., Keen, D.A., Wells, S.A. and Evans, J.S.O., 2005. Negative thermal expansion in ZrW2O4:Mechanisms, rigid unit modes, and neutron total scattering.

*Physical Review Letters*, 95 (25), 255501.Evans, J. D., 2005. Re-entrant corner flows of UCM fluids: The initial formation of lip vortices.

*Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences*, 461, 3169--3181.Evans, J. D., 2005. Analytical solution of the cable equation with synaptic reversal potentials for passive neurons with tip-to-tip dendrodendritic coupling.

*Mathematical Biosciences*, 196, 125--152.Evans, J. D., 2005. Re-entrant corner flows of Oldroyd-B fluids.

*Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences*, 461 (2060), pp. 2573-2603.Evans, J. D., 2005. A cable model for coupled neurons with somatic gap junctions.

*Biological Cybernetics*, 92 (3), pp. 164-176.Evans, J. D., 2005. Re-entrant corner flows of the upper convected Maxwell fluid.

*Proceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences*, 461, 117--142.King, J. R. and Evans, J. D., 2005. Regularization by kinetic undercooling of blow-up in the ill-posed stefan problem.

*SIAM Journal on Applied Mathematics*, 65, 1677--1707.Evans, J. D., 2005. Multicylinder models for synaptic and gap-junctional integration. Boca Raton: CRC Press, 117--177.

Evans, J. D. and King, J. R., 2003. The Stefan problem with nonlinear kinetic undercooling.

*Quarterly Journal of Mechanics and Applied Mathematics*, 56, 139--161.Evans, J. D., Kuske, R. and Keller, J. B., 2002. American options on assets with dividends near expiry.

*Mathematical Finance*, 12, 219--237.